The Big Mac index π
Animated Graph No.Β 1
By Patrizia Maier
Plot No. 1
By Andreas Neumann
Plot No. 2
By Long Nguyen (@long39ng)
library(tidyverse)
library(ggtext)
library(ggtextures)
theme_set(
theme_minimal(base_family = "Libre Franklin", base_size = 16) +
theme(axis.text.x = element_text(size = 10, colour = "#f07178"),
axis.text.y = element_text(face = "bold", colour = "#82aaff"),
panel.grid = element_blank(),
panel.grid.major.x = element_line(colour = "#373c53", size = .5),
plot.background = element_rect(fill = "#292d3e"),
plot.margin = margin(30, 30, 30, 30),
plot.title = element_markdown(size = rel(1.3),
family = "BioRhyme Expanded",
colour = "#c3e88d",
lineheight = 1.5),
plot.subtitle = element_markdown(colour = "#c792ea",
lineheight = 1.2,
margin = margin(b = 15)),
plot.title.position = "plot",
plot.caption = element_markdown(size = 10,
colour = "#c792ea",
lineheight = 1.2,
margin = margin(t = -20)))
)
big_mac <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-12-22/big-mac.csv')
glimpse(big_mac)
#> Rows: 1,386
#> Columns: 19
#> $ date <date> 2000-04-01, 2000-04-01, 2000-04-01, 2000-04-01, 2000-0β¦
#> $ iso_a3 <chr> "ARG", "AUS", "BRA", "CAN", "CHE", "CHL", "CHN", "CZE",β¦
#> $ currency_code <chr> "ARS", "AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK",β¦
#> $ name <chr> "Argentina", "Australia", "Brazil", "Canada", "Switzerlβ¦
#> $ local_price <dbl> 2.50, 2.59, 2.95, 2.85, 5.90, 1260.00, 9.90, 54.37, 24.β¦
#> $ dollar_ex <dbl> 1.0000000, 1.6800000, 1.7900000, 1.4700000, 1.7000000, β¦
#> $ dollar_price <dbl> 2.500000, 1.541667, 1.648045, 1.938776, 3.470588, 2.451β¦
#> $ usd_raw <dbl> -0.00398, -0.38579, -0.34341, -0.22758, 0.38270, -0.023β¦
#> $ eur_raw <dbl> 0.05007, -0.35246, -0.30778, -0.18566, 0.45774, 0.02964β¦
#> $ gbp_raw <dbl> -0.16722, -0.48645, -0.45102, -0.35417, 0.15609, -0.183β¦
#> $ jpy_raw <dbl> -0.09864, -0.44416, -0.40581, -0.30099, 0.25130, -0.116β¦
#> $ cny_raw <dbl> 1.09091, 0.28939, 0.37836, 0.62152, 1.90267, 1.05023, 0β¦
#> $ gdp_dollar <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,β¦
#> $ adj_price <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,β¦
#> $ usd_adjusted <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,β¦
#> $ eur_adjusted <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,β¦
#> $ gbp_adjusted <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,β¦
#> $ jpy_adjusted <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,β¦
#> $ cny_adjusted <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,β¦
burger_img <- "https://twemoji.maxcdn.com/v/latest/72x72/1f354.png"
big_mac_capita <- big_mac %>%
slice_max(date) %>%
drop_na(gdp_dollar) %>%
mutate(n_burgers = gdp_dollar / dollar_price / 1000)
big_mac_capita %>%
ggplot(aes(x = fct_reorder(name, n_burgers), y = n_burgers)) +
geom_isotype_col(image = burger_img,
img_width = unit(1, "native"),
img_height = unit(.7, "native"),
ncol = NA, nrow = 1, hjust = 0, vjust = .5) +
scale_y_continuous(position = "right", labels = function(x) {
x <- paste0(x, "k")
x[x == "0k"] <- "0"
x
}) +
annotate(geom = "text", x = 36.5, y = 17.5, label = "}",
hjust = 0, vjust = .39, angle = 270,
family = "Libre Franklin", colour = "#c792ea", size = 7) +
annotate(geom = "text", x = 35.9, y = 17.5, label = "1000\nBig Macs",
hjust = .5, vjust = 1, lineheight = 1,
family = "Libre Franklin", colour = "#c792ea") +
coord_flip() +
labs(x = NULL, y = NULL,
title = toupper("Big Macs per capita"),
subtitle = "How many Big Macs could be bought at local price<br>
with the GDP per person in 2020",
caption = "Data: *The Economist*<br>Hamburger emoji: *Twemoji*")
Plot No. 3
By Sylvi Rzepka (@SylviRz)
Plot No. 4
By Frie Preu
library(tidyverse)
library(countrycode)
library(hrbrthemes)
# load data
big_mac <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-12-22/big-mac.csv')
big_mac <- big_mac %>%
mutate(date = lubridate::ymd(date),
year = lubridate::year(date))
# add continent
big_mac$continent <- countrycode(big_mac$iso_a3, origin = 'iso3c', destination = 'continent')
big_mac <- big_mac %>%
mutate(continent = if_else(iso_a3 == "EUZ", "Europe", continent))
ggplot(big_mac, aes(x = date, group = iso_a3, color = continent, y = dollar_price))+
geom_point(size = 0.4)+
geom_line(alpha = 0.4)+
facet_wrap(~continent, ncol = 2)+
theme_ft_rc()+
labs(title = "Big Mac Index Over Time", y = "Big Mac Index")